
20 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Product Lines
A New Paradigm for the New Century

Paul Clements
Software Engineering Institute

Imagine turning out a 1.5 mil-
lion-line Ada command and control
system for a Navy frigate warship.

The system is hard real-time, fault-
tolerant, and highly distributed, run-
ning on 70 separate processors on 30
different local area network nodes scat-
tered all over the ship. It must interface
with radars and other sensors, missile
and torpedo launchers, and other com-
plicated devices. The human-computer
interface is complex and highly de-
manding. In this application, quality is
everything: The system must be robust,
reliable, and avoid a host of perfor-
mance, distribution, communication,
and other errors.

Now suppose that you have not one
of these systems to build but several.
Your marketing department has suc-
ceeded beyond your wildest dreams.
Navies from all over the world have
ordered your command and control
system. Now, your software must run
on almost a dozen different ship classes
including a submarine, systems that are
drastically separate: The end users speak
different languages (therefore, the hu-
man-computer interface requirements
are extremely different), the ships are
laid out differently, have different num-
bers of processors and nodes, and dif-
ferent fault tolerance requirements,
different weapons systems and sensors,
and different computers and operating
systems. But quality remains crucial in
all of them.

Suppose you are the manager for
this megaproject. Do you panic? Do
you resign? Run to a third-world coun-
try? What if you could produce each
one of the systems for a fraction of the
cost and in a fraction of the time that
one would normally expect? And what

if you could do it so that quality was
improved and reliability and customer
satisfaction increased with each new
system? What if creating a new ship
system was merely a matter of combin-
ing large, easily tailorable components
under the auspices of a software archi-
tecture that was generic across the en-
tire domain (in this case, of shipboard
command and control systems)?

Is this a fantasy? No, it is not. It is
the story of CelsiusTech Systems AB, a
long-time European defense contractor.
In the 1980s, CelsiusTech was con-
fronted with the dilemma outlined
above: They had to build two large
command and control systems, each
larger than anything they had at-
tempted before, and they had barely
enough resources to build one. Because
necessity stimulates invention (and
determination implements it), Celsius-
Tech realized that their only hope was
to build both systems at once using the
same assets and resources. And in a vi-
sionary stroke, CelsiusTech knew that
their future lay in exploiting these assets
for not only the first two systems but
also for a whole family of products they
hoped and expected would follow.

Software Product Lines
In short, CelsiusTech launched a soft-
ware product line. A product line is a set
of products that together address a
particular market segment or fulfill a
particular mission. Product lines prom-
ise to become the dominating produc-
tion software paradigm of the new
century. Product flexibility is the new
anthem of the marketplace, and prod-
uct lines fulfill the promise of tailor-
made systems built specifically for the
needs of particular customers or cus-

tomer groups. What makes product
lines succeed from the vendor’s
(developer’s) point of view is that the
commonalities shared by the products
can be exploited to achieve economics
of production.

Product lines are nothing new in
manufacturing. Boeing builds one, so
does Ford, IBM, and even McDonald’s.
Each of these exploits commonality in
different ways. Boeing, for example,
developed the 757 and 767 transports
in tandem, and the parts lists of these
two decidedly different aircraft overlap
by about 60 percent. But software prod-
uct lines based on interproduct com-
monality are a relatively new concept,
and the community is discovering that
this path to success contains more than
its share of pitfalls.

The Software Engineering Institute
(SEI) has a program to identify and
promulgate the best practices for prod-
uct-line production and help organiza-
tions negotiate the hurdles to which
adopting a product-line approach will
lead. The Product-Line Systems Pro-
gram focuses on these essential technol-
ogy areas for product-line production:
• Domain Engineering – Reveals the

commonalities and variations
among a set of products.

• Architecture – The foundation for a
product line, it provides the frame-
work into which tailorable compo-
nents plug.

• Architecture-Based Development –
The disciplined derivation or gen-
eration of product components (and
once the components are ready,
whole products) from the architec-
tural skeleton.

• Reengineering – helps mine reus-
able assets from legacy assets.

Software developed as a product line promises to be a dominant development paradigm for
the new century, one that the Department of Defense (DoD) can leverage when acquiring
software-intensive systems. This article discusses the advantages of product lines, uncovers
some of their pitfalls, and shows by example the kinds of successes the organizations can enjoy.

Emerging Ideas

CROSSTALK The Journal of Defense Software Engineering 21February 1999

The result is a technology infrastructure
that can produce large custom systems
quickly and reliably by checking out
components from the asset repository,
tailoring the components for their par-
ticular application (CelsiusTech uses
compile-time parameters to instantiate
different versions of a component), and
beginning the integrate-and-test cycle
as in normal system development.

Product Line Benefits
Once the product-line repository is
established, consider what is saved each
time a product is ordered.
• Requirements. Most of the require-

ments are common with earlier
systems and therefore can be used.
Requirements analysis is saved.
Feasibility is assured.

• Architectural design. An architecture
for a software system represents a
large investment in time from the
organization’s most talented engi-
neers. The quality goals for a sys-
tem—performance, reliability, modi-
fiability, etc.—are largely allowed or
precluded once the architecture is in
place. If the architecture is wrong,
the system cannot be saved; however,
for a new product, this most impor-
tant design step is already done and
need not be repeated.

• Components. The detailed (inter-
nal) designs for the architectural
components are reused from system
to system, as is the documentation
of those designs. Data structures
and algorithms are saved and need
not be reinvented.

• Modeling and analysis. CelsiusTech
reports that the real-time distributed
headache associated with the kinds
of systems they build (real-time
distributed) has all but vanished.
When they field a new product in
their product line, they have ex-
tremely high confidence that the
timing problems have been worked
out, and the challenges associated
with distributed computing—syn-
chronization, network loading, and
absence of deadlock—have been
eliminated.

• Testing. Test plans, test processes,
test cases, test data, test harnesses,

and the communication paths re-
quired to report and fix problems
are already available.

• Planning. Budgets and schedules
can be reused from previous
projects, and they are much more
reliable.

• Processes. Configuration control
boards, configuration management
tools and procedures, management
processes, and the overall software
development process are in place,
have been used before, and are ro-
bust, reliable, and responsive to the
organization’s special needs.

• People. Because of the commonality
of the applications, personnel can be
fluidly transferred among projects as
required. Their expertise is appli-
cable across the entire line.
Product lines enhance quality. Each

new system takes advantage of all of the
defect elimination in its forebearers;
both developer and customer confi-
dence rise with each new instantiation.
The more complicated the system, the
higher the payoff for solving the vexing
performance, distribution, reliability,
and other engineering issues only once
for the entire family.

Clearly, product lines benefit the
developing organization, but they also
benefit acquirers of systems as well.
Acquiring a family of related systems
using a product-line acquisition ap-
proach (as opposed to acquiring each
system separately and independently)
clearly falls within the realm of DoD
reuse initiatives and policies and prom-
ises to accrue significant benefits for the
DoD, including
• Streamlining the acquisition process.
• Enjoying higher product quality.
• Lower acquisition cost.
• Simplified training.
• Reduced maintenance cost.

Organizational Maturity Needs
It takes a certain maturity in the devel-
oping organization to successfully field
a product line. Technology is not the
only barrier to successful product-line
adoption. Experiences in the Product-
Line Systems Program show that orga-
nization, process, and business issues
are equally vital to master.

For instance, traditional organiza-
tional structures that have one business
unit per product are generally not ap-
propriate for product lines. Who will
build and maintain the core reusable
assets—the architecture, the reusable
components, and so forth? If these
assets are under the control of a busi-
ness unit associated with one product
or one large customer, the assets may
evolve to serve that business unit, that
product, and that customer to the ex-
clusion of the others. On the other
hand, to establish a separate business
unit to work on the core assets but be
divorced from working on individual
products carries the danger that this
unit will produce assets that emphasize
beauty and elegance over practicality
and utility. In either case, producing
and managing the reusable assets means
establishing processes to make the assets
satisfy the needs of all of the business
units that use them. This is a crucial role
that requires staff skilled in abstraction,
design, negotiation, and creative prob-
lem solving. The question of funding the
core asset development is crucial.

Customer Management
Customer management becomes an
important product-line function. Cus-
tomers interact with a product-line
organization in a different way. Market-
ers can no longer agree to anything
customers want but must instead nudge
customers to set their requirements so
that they can be fulfilled by a version of
the product line within the planned
scope of variation.

Contrary to intuition, this often
makes the customer much happier than
before. Under the new paradigm, the
marketer can point to specific require-
ments that would put the customer’s
new system outside the scope of the
product line, which would increase the
cost and delivery time, lower the
system’s reliability, and keep that cus-
tomer out of a community of customers
to which the vendor pays a lot of atten-
tion. Thus, the customer could clearly
(and probably for the first time) see the
real cost of those “special” requirements
and make an informed decision about
their real value. If the customer decides

Software Product Lines: A New Paradigm for the New Century

22 CROSSTALK The Journal of Defense Software Engineering February 1999

that a variant of the “standard” or prod-
uct-line system will suffice, so much the
better. If not, the customer can still
order a system to satisfy particular re-
quirements but with a better idea of
where the risks may be hiding.

The customer community should
not be underestimated. In Celsius-
Tech’s case, their naval customers
around the world banded together to
form a users’ group. They did this in
their self-interest—to provide a forum
in which they could jointly derive new
requirements for their evolving sys-
tems and drive CelsiusTech to supply
new systems more economically than
they otherwise might. But it does not
take much to realize how beneficial
this is to CelsiusTech as well: Their
customer base is jointly defining their
next-generation products and effec-
tively buying in to their approach, thus
guaranteeing the vitality of their prod-
uct line for years to come.

The users’ group has a clear lesson
for DoD acquisitions: It pays to col-
laborate (or at least communicate)
when it comes to commissioning or
purchasing similar systems.

Conclusion
Successful transition to product-line
technology is thus a careful blend of
technology, process, organization, and
business factors improvement. The
Product-Line Systems Program is at-
tempting to codify these practices and
understand how they vary with the type

of organization involved and the kind
of systems being built. Through a series
of workshops, case studies, and collabo-
rative engagements, SEI is helping to
build a community of organizations
interested in moving to a product-line
approach for their software products.

We believe that product lines will be
the predominant software paradigm at
the beginning of the new century. The
history of programming can be viewed
as an upward spiral in which the ab-
stractions manifested by components
have grown larger and more application
meaningful, with resulting increases in
the reuse and applicability of those
components. From subroutines in the
1960s to modules in the 1970s to ob-
jects in the 1980s to component-based
systems in the 1990s, software product
lines will perpetuate the upward spiral
by accomplishing previously unheard-of
levels of reuse from system to system.

If the pitfalls are successfully negoti-
ated, the result is an enviable capacity
to deliver extremely large systems on
time and within budget.

For more information about the
Product-Line Systems Program and its
technology initiatives, visit SEI’s Web
page at http://www.sei.cmu.edu. You
can download the full report that details
the CelsiusTech product-line case study,
which includes data about their dramatic
results in time to market, levels of reuse,
and required staffing. You also can read
other product-line-related material,
including the latest version of the SEI’s

Product-Line Practice Framework, a
document that describes the essential
practice areas of successful product-line
development and acquisition. Contact
the program manager, Linda Northrop,
at lmn@sei.cmu.edu, for additional
information. ◆

About the Author
Paul Clements is a
senior member of the
technical staff at
Carnegie Mellon
University’s SEI. A
graduate of the Univer-
sity of North Carolina

and the University of Texas, he is a
project leader in the SEI’s Product-Line
Systems Program. His work includes
collaborating with organizations that are
launching product-line efforts. He is a
co-creator of the Software Architecture
Analysis Method (SAAM), which allows
organizations to evaluate architectures for
fitness of purpose. He and others are
working on an extension to SAAM,
which will allow analysis of quality at-
tribute trade-offs at the architectural
level. He is co-author of Software Archi-
tecture in Practice (Addison-Wesley-
Longman, 1998) and over three dozen
papers and articles about software engi-
neering.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 512-453-1471
Fax: 412-268-5758
E-mail: clements@sei.cmu.edu

Emerging Ideas

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

